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Abstract. We consider the dynamics and kinetic roughening of wetting fronts in the case of forced wetting
driven by a constant mass flux into a 2D disordered medium. We employ a coarse-grained phase field
model with local conservation of density, which has been developed earlier for spontaneous imbibition
driven by capillary forces. The forced flow creates interfaces that propagate at a constant average velocity.
We first derive a linearized equation of motion for the interface fluctuations using projection methods.
From this we extract a time-independent crossover length ξ×, which separates two regimes of dissipative
behavior and governs the kinetic roughening of the interfaces by giving an upper cutoff for the extent of the
fluctuations. By numerically integrating the phase field model, we find that the interfaces are superrough
with a roughness exponent of χ = 1.35 ± 0.05, a growth exponent of β = 0.50 ± 0.02, and ξ× ∼ v−1/2

as a function of the velocity. These results are in good agreement with recent experiments on Hele-Shaw
cells. We also make a direct numerical comparison between the solutions of the full phase field model and
the corresponding linearized interface equation. Good agreement is found in spatial correlations, while the
temporal correlations in the two models are somewhat different.

PACS. 47.55.Mh Flows through porous media – 05.40.-a Fluctuation phenomena, random processes, and
Brownian motion – 68.35.Ct Interface structure and roughness

1 Introduction

The dynamics and roughening of moving interfaces in a
disordered medium is a subject of intense interest in non-
equilibrium statistical physics [1]. Examples where such
processes are relevant include thin film deposition [2], slow
combustion fronts in paper [3], fluid invasion in fractals [4]
and porous media [5–7], and wetting and propagation of
contact lines [8–10]. The understanding of the underly-
ing physics involved in interface roughening is crucial to
the control and optimization of these processes, with im-
mediately apparent technological importance. Progress in
the theoretical study of interface dynamics has been made
over the last two decades and a number of theories have
been developed [1,7] which agree with the experimental
findings in some cases. Much of the theoretical work has
been based on analyzing (spatially) local interface equa-
tions, such as the celebrated Kardar-Paris-Zhang (KPZ)
equation [11], where the physics is governed by a (non-
linear) partial differential equation which couples the in-
terface locally with itself and the quenched randomness.
However, in many cases such a description is not possi-
ble [4,12].

A particularly important class of problems in the field
of kinetic roughening where local theories cannot provide
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a complete description are those involving fluid invasion
in porous media, which are often experimentally studied
using Hele-Shaw cells [13–16] or even paper as the wetting
medium [17–20]. The reason for this is that if the transport
of liquid to the advancing wetting front from the reser-
voir is neglected as in local theories, slowing down of the
front in spontaneous imbibition of water in paper cannot
be explained by local theories unless the liquid conserva-
tion law is included in some artificial way. To properly de-
scribe the dynamics of wetting fronts in random medium
is a challenging task, and there are several recent theo-
retical attempts to this end [15,21,22]. In particular, in
references [12,23–25] Dube et al. developed a phase-field
model explicitly addressing the issue of liquid conservation
in the wetting of a random medium. This is achieved by a
generalized Cahn-Hilliard equation with suitable bound-
ary condition which couples the system to the reservoir.
A variant of the sharp interface projection method [26,27]
was used to analytically obtain a non-local interface equa-
tion for the case of spontaneous imbibition, and from it
a new time dependent length scale governing the kinetic
roughening ξ× ∼ t1/4, was extracted. In references [12,23]
the kinetic roughening of 2D wetting fronts was also an-
alyzed, and estimates for the corresponding scaling expo-
nents were obtained. Furthermore, in a recent comprehen-
sive review paper [28] the case of forced wetting in 2D was
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briefly discussed, and in reference [29] forced wetting in a
3D model of paper was also considered.

In the present work our aim is to carry out a com-
prehensive analysis of wetting fronts in 2D in the case of
forced wetting. To this end, we use the phase-field model of
reference [12] with boundary conditions corresponding to
a constant mass flux at the reservoir boundary. This makes
the wetting fronts move at a constant average velocity, in
contrast to the Washburn law for spontaneous wetting.
We first expand on the standard projection method to
make it usable under constant flow boundary conditions,
and derive the linearized interface equations correspond-
ing to the forced case. Analysis of these equations reveals
a crossover length scale ξ×, which is time-independent in
contrast to the spontaneous wetting case [12], and depends
on the interface velocity as ξ× ∝ v−1/2. It separates two
regimes of dissipative behavior and governs the kinetic
roughening of the interfaces by giving an upper cutoff for
the correlation length of the interface fluctuations. By nu-
merically integrating the phase field model, we find that
the interfaces are superrough with a roughness exponent of
χ = 1.35±0.05, and a growth exponent of β = 0.50±0.02.
These results are in good agreement with recent exper-
iments on Hele-Shaw cells [14]. We also make a direct
numerical comparison between the solutions of the full
phase field model and the corresponding linearized inter-
face equation. Good agreement is found in spatial corre-
lations, while the temporal correlations in the two models
are somewhat different.

This paper proceeds as follows: in Section 2 we define
the phase field model, and present results from the
projection and linearization procedure. We present the
resulting interface equations, as well as discuss how
the crossover length scale ξ× emerges. In Section 3 we
present our numerical results for the driven interfaces in
disordered medium. We consider both spatial and tempo-
ral correlation functions, as well as compare the numerical
results from the linearized interface equation to the phase
field model. Finally, we present our discussion and con-
clusions in Section 4. The Appendices A and B contain
some technical details on the projection and linearization
procedures leading to the interface equations.

2 Model for wetting

2.1 Definition of the phase field model

The model describes the dynamics of a liquid invading
a disordered medium at a coarse-grained level. A phase
field is used to describe the “wet” and “dry” phases, with
a free energy functional such that the dimensionless phase
field obtains the values φ = +1 and φ = −1 at the wet
and dry phases, respectively. Since the phase field is an
effective density field it is locally conserved. Energy cost
for an interface is added by the standard coarse-grained
gradient squared term. The interaction energy between
the random medium and the invading liquid is represented
by a quenched random field linearly coupled to the phase

field. This leads to the free energy density [12]

F [φ(x, t)] =
1
2
(∇φ(x, t))2 +V (φ(x, t))−α(x)φ(x, t), (1)

where V has two minima at φ = −1 and φ = +1, and
α is the quenched random field. The standard Ginzburg-
Landau form is chosen for V , i.e. V (φ) = −φ2/2 +
φ4/4 [12], and the quenched field obeys the relations

〈α(x)〉 = 0 (2)
〈α(x)α(x′)〉 = (∆α)2δ(x − x′). (3)

The case of positive (negative) 〈α(x)〉 corresponds to the
liquid spontaneously wetting (dewetting) the medium for
the case of no external driving [12].

The equation of motion for the conserved phase field is
given by the continuity equation ∂tφ = −∇ · j and Fick’s
law j = −∇µ, where µ = δF/δφ. The result is

∂tφ(x, t) = ∇2µ(x, t) =

∇2
[−φ(x, t) + φ3(x, t) −∇2φ(x, t) − α(x)

]
, (4)

which is essentially the Cahn-Hilliard equation [30]. Note
that dimensionless units have been set such that the con-
stant relating the phase field gradient to the free energy
and the mobility in Fick’s law are both unity. This fixes
the choice of units in equation (4).

In references [12,24] the case of spontaneous, capil-
lary driven wetting was modeled with equation (4) using
boundary conditions where the chemical potential was set
to a constant at the liquid reservoir y = 0. In order to
model the experimental setup of driving the liquid from
the reservoir, we define our phase-field in the half-plane
{x|y ≥ 0}, and at the line y = 0 impose the boundary
condition ∇µ = −F ŷ, where ŷ is the unit vector, and F is
a constant (flux) parameter (see Fig. 1a). On the top end
of the system we set φ(y → ∞) = −1, and use periodic
boundaries in the x direction. Physically this corresponds
to driving the liquid via a constant mass flow, leading to an
interface propagating at a constant average velocity [28].

The initial condition for the phase field is given by
a step function at some height H(0) = H(t = 0),
φ(x, t = 0) = 1 − 2Θ(y −H(0)). H(0) is also a parameter
in our model, but with the gradient boundary condition
here its value is irrelevant, in contrast to the case of spon-
taneous imbibition, where H(0) defines the initial average
velocity of the interface [12].

2.2 Linearized interface equation

The quenched disorder field α(x) will cause an initially
flat interface to kinetically roughen when it propagates as
the liquid invades the medium. A key step in understand-
ing the physics of this process is writing an equation of
motion for the 1D single-valued height variable H(x, t),
defined conveniently by the condition φ(x, H(x, t)) = 0 as
shown in Figure 1a. It is not obvious a priori that this can
be done, since the problem is inherently non-local due to
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Fig. 1. (a) A schematic geometry and setup of the model. The height of the front is described by a single-valued function H(x, t),
and the driven boundary condition at the reservoir at y = 0 is described by a constant gradient of the chemical potential. (b)
The profile of the chemical potential µ(x, y) along the y axis at successive time steps t1 < t2... < t4. (c) The profile of the
density field φ(x, y) along the y axis at successive time steps corresponding to (b). Note that due to the conservation law these
profiles have a finite slope in the wet region of the medium. (d) A set of typical rough front configurations of a rising interface
H(x, t) taken at equal time intervals ∆t = 80.

the conservation law [12], but it has been shown in refer-
ence [12] that this can be done using methods discussed in
references [26,31,32]. In Appendix A we will discuss some
technical details of the derivation. The main idea is to use
the relevant Green’s function of the problem defined by

∇2G(x, y|x′, y′) = δ(x − x′) δ(y − y′), (5)

with appropriate boundary conditions. This leads to the
integro-differential equation of motion

2
∫ ∞

−∞
dx′ G(x, H(x, t)|x′, H(x′, t))

∂H(x′, t)
∂t

=

α(x, H(x, t)) + σκ + Λ|y=H(x,t), (6)

where κ is the interface curvature, and Λ is the boundary
term, which is non-vanishing for inhomogenous boundary
conditions. Note that equation (6) holds for any geometry
given the appropriate Green’s function. For the half plane
with von Neumann boundary condition at y = 0, the 2D
Green’s function is obtained by image charge method as

G(x, y|x′, y′) =
1
4π

ln
[
((x − x′)2 + (y − y′)2)

× ((x − x′)2 + (y + y′)2)
]
. (7)

The next step towards an explicit interface equation is
to linearize in fluctuations around the disorder-free sys-
tem solution, H(x, t) = H0(t) + h(x, t), and transform to
Fourier space, where the equations of different modes of
fluctuation are decoupled. The half plane Green’s function
defined in equation (7) is not square integratable, however,
and thus it does not have a Fourier representation. How-
ever, we have found that we can avoid this problem by
considering a finite strip of width L where 0 ≤ x ≤ L,
and derive a linearized equation of motion for the discrete
Fourier modes of the fluctuations. Then we can take the
limit L → ∞ to obtain the equation of motion in Fourier
space for an interface in half-plane geometry, and the end
result is well-defined. This procedure is exposed in some
detail in Appendix B.

The linearization procedure, by construction, gives a
separate equation of motion for the mean interface posi-
tion H0(t), which turns out to be coupled to all the fluctu-
ation Fourier modes hk, while the evolutions of the fluctu-
ation modes are independent of each other. The resulting
equations are given by

Ḣ0 =
F

2
; (8)

ḣk

(
1 + e−2|k|H0

)
= |k|

(
−Ḣ0 hk

(
1 − e−2|k|H0

)

−σk2hk + ηk(t)
)
, (9)

from which we immediately obtain the expected result
that

H0(t) =
Ft

2
. (10)

This should be contrasted with the Washburn law H0(t) ∝
t1/2 in the case of spontaneous wetting [12]. It is interest-
ing to note that the functional form of equation (9) for
the fluctuations of the interface is similar to the case of
spontaneous wetting in reference [12], except for some sign
changes in the terms. It can be shown that these changes
are a direct consequence of the differences between the
Green’s functions in the two cases, and they lead to sig-
nificant differences in the behavior of the fluctuations as
will be discussed below.

The most immediate aspect of these equations is that
the fluctuation equation is non-local in real space. This
is to be expected due to the conservation law [12]. The
locality of the interface equation in Fourier space owes to
the fact that it has been linearized. The interface config-
uration couples to the disorder in a fundamentally non-
linear manner, a fact that is somewhat obscured by the
superficially simple form of the disorder term ηk, which is
defined as

ηk(t) ≡
∫

dx e−ikxα(x, H(x, t)). (11)

The moments of ηk averaged over disorder realiza-
tions thus couple to the interface configuration realiza-
tions, which in turn are defined by the disorder. This
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makes the analysis of ηk a formidable task that must
be solved self-consistently involving the interface equa-
tion. In more explicit terms, in expressions such as
〈α(x, H(x, t))α(x′ , H(x′, t′))〉, the angular brackets denote
averages over different realizations of H , and results can
only be obtained numerically.

In equation (9) there are two terms that dissipate fluc-
tuations corresponding to different physical effects: the
surface tension term σk3hk and the liquid transport (con-
servation law) |k|Ḣ0

(
1 − e−2|k|H0

)
hk. The surface tension

dominates when kḢ0 � σk3, leading to a time indepen-
dent crossover length scale between the two terms given by

ξ× = 2π

√
σ

Ḣ0

= 2π

√
2σ

F
. (12)

This is in striking contrast to the spontaneous case, where
the corresponding crossover length is time dependent with
ξ× ∝ t1/4 [12]. Moreover, in the dispersion relation of the
fluctuations there is an additional crossover in the trans-
port term obtained by comparing the length scales H0(t)
and k. Namely, for kH0(t) � 1 the transport term is kḢ0,
while for kH0(t) � 1 it is 2k2H0Ḣ0, leading to a crossover
between ω ∝ k and ω ∝ k2 in the dispersion relation of
the interface fluctuations. Regardless of the magnitude of
kH0(t), we will show through numerical studies that the
crossover length scale ξ× controls the kinetic roughening
of the interface in analogy to the spontaneous imbibition
case, in that it defines an upper cut-off for fluctuations
that are increasing in time and correlated by the surface
tension.

3 Numerical analysis

The interface fluctuations in the presence of quenched dis-
order were analyzed by numerical integrations of equa-
tion (4) with the appropriate boundary conditions shown
in the schematic representation of Figure 1. In order to im-
plement the von Neumann boundary condition at y = 0,
equation (4) is modified as follows:

∂tφ(x, t) =

∇2
[−φ(x, t) + φ3(x, t) −∇2φ(x, t) − FH0(t) − α(x)

]
,

(13)

where the addition of the term FH0(t) ensures that the in-
terface will propagate at constant velocity v ≡ Ḣ0 = F/2
due to the driving flux. The above equation is then solved
with the Dirichlet boundary condition µ|y=0 = 0. The ba-
sis of this numerical trick is that the added term FH0

does not influence the bulk dynamics, but the constant
chemical potential value at the reservoir is being shifted
linearly in time compared to the chemical potential value
of the bulk phases φ ≡ ±1. This results in a chemical po-
tential profile consistent with the von Neumann boundary
condition in the domain from the reservoir at y = 0 to the
interface at y = H , as shown in Figure 1b.

The position of the interface H(x, t) at each x was de-
fined as φ(x, H(x, t)) = 0 by linear interpolation between
the points of the numerical grid. Without any loss of gen-
erality, the chemical potential at the boundary is chosen
such that µ(x, y = 0) = 0, leading to φ(x, y = 0) = φ0,
where φ0 is the solution of −φ0 + φ3

0 = FH0(t)1.
Typical plots for the chemical potential and the density

field along the y axis obtained from numerical integration
of equation (13) without quenched disorder (∆α = 0) are
shown in Figures 1b and c, respectively. A set of successive
interface configurations with v = 0.02, and ∆α = 0.2 are
also shown in Figure 1d.

It is interesting to note from Figure 1c that behind the
moving interface the density field is always increasing in
time. For late times it increases like φ ∝ t1/3, due to the
constant chemical potential gradient, and the bulk phase
field free energy V (φ) = −φ2/2+φ4/4. Thus eventually φ
close to the reservoir will reach values much greater than
+1, which have no direct physical interpretation. In the
bulk domain between the reservoir and the interface, the
system can be described by the chemical potential alone,
which has the desired profile. The density field is needed to
deal with the interface, and the form of V (φ) was chosen
to this end. Therefore, we consider the values φ > 1 to be
a harmless artifact in our model.

There are ways one could proceed to remove this arti-
fact, if desired. Constructing V (φ) in a way that would
asymptotically constrain the phase field to some value
somewhat larger than unity is one way, but such a diver-
gent function would probably lead to stability problems
when numerically solving the phase field equations. An-
other way is by using a method of moving box to hold the
interface at a constant height, i.e. pulling down the disor-
der field at constant time intervals, or equivalently moving
the reservoir up, while appropriately changing the value of
the chemical potential at the new reservoir position. This
method takes advantage of the fact that far from the in-
terface only the bulk chemical potential matters. Thus the
method doesn’t really remedy the probelm in the model,
but rather hides it. The moving box method was used in
some of our numerics, since it also increases computational
efficiency by removing unnecessary bulk phase region from
the system, especially when the interface moves fast. The
moving box method was found to make no relevant differ-
ence to our results.

3.1 Spatial roughness

With ∆α > 0, the driven wetting front kinetically rough-
ens as can be seen in Figure 1d. To characterize the spatial

1 It should be pointed out that the von Neumann boundary
condition can also be implemented directly by using µ(y =
0) = µ(y = ∆y) + F∆y, where ∆y is the size of the spatial
discretization. The numerical implementation of the von Neu-
mann boundary condition is then used to fix φ(x, y = 0) = φ0,
where φ0 is the solution of −φ0+φ3

0 = −φ(x, y = ∆y)+φ(x, y =
∆y)3 + F∆y. We have compared the two different implemen-
tations and found no distinguishable differences.
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extent of the roughness, we first consider the spatial two-
point correlation function

G2(r, t) = 〈[h(x + r, t) − h(x, t)]2〉1/2, (14)

which is directly related to the structure factor
S(k, t) ≡ 〈hk(t)h−k(t)〉. In the above equations the brack-
ets denote an average over different configurations of ran-
dom noise, and the overbar a spatial average over the sys-
tem.

In Figure 2a we show numerical data for the spatial
correlation function. We find that the correlation length
of the roughness of the interface saturates after an initial
growth. According to equation (12), the crossover length
ξ× is related to the interface velocity by ξ× ∼ v−1/2. In the
inset of Figure 2a we plot the velocity dependence of the
corresponding crossover length ξ2 found from G2(r). We
indeed find that this length ξ2 ∼ v−0.45, which means that
ξ2 ∝ ξ× as in the case of spontaneous wetting, too [12].

An estimate for the global roughness exponent χ can
be obtained from the structure factor S(k, t), as shown
in Figure 2b. As expected, we find that S(k) ∼ 1/k1+2χ

is well satisfied, with a global roughness exponent of
χ ≈ 1.25, and a crossover to a plateau corresponding to
distances larger than the intrinsic correlation length ξ×,
consistent with the analysis from the linearized interface
equation. We actually found that the global roughness ex-
ponent slightly depends upon the velocity and increases
with decreasing velocity until asymptotically approaching
a value of about 1.35. For velocities v = 0.005, 0.002, and
0.001, with ∆α = 0.1, it was found that χ ≈ 1.27, 1.35,
and 1.37, respectively. Moreover, that global roughness ex-
ponent slightly depends on the strength of the noise. For
example, for v = 0.005, χ ≈ 1.27 and 1.36 for ∆α = 0.1
and 0.2, respectively. We also compared the crossover
lengths obtained from G2(r, t) to those from S(k, t), and
found that the value of ξ× from S(k, t) is about twice of
that of ξ2, independent of disorder strength.

We also estimated the the local roughness exponent
χloc according to the scaling relationship G2(r = 1, t) ∼
ξχ−χloc
× ∼ v(χloc−χ)/2 for different velocities [12], and found

that χloc ≈ 1.0, as expected for superrough interfaces.
The spatial correlation function G2(r, t) should also fol-
low the same scaling form G2(r, t) ∼ ∆αv−χ/2g(rv1/2) as
G2(r, H) for spontaneous imbibition with fixed interface
front height [12].

3.2 Temporal roughness

To quantify the temporal development of the roughness,
we consider the width of the interface defined by

w2(t) = 〈(h(x, t) − h(x, t))2〉. (15)

In the presence of quenched disorder the roughness ini-
tially increases as a power law of time, as shown in Fig-
ure 3. After a crossover, the roughness reaches a saturated
regime. For small ∆α = 0.1, only relatively low velocities
were studied, because for velocity as high as v = 0.05,
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Fig. 2. (a) Spatial correlation functions G2(r, t) for a system
of size L = 256, with ∆α = 0.3, v = 0.05 at different times.
The data are from t = 103 to t = 104 at equal time inter-
vals of t = 2 × 103. In the inset, the crossover lengths ξ×(v)
obtained from G2 for different velocities are plotted. (b) The
structure factor S(k, t) plotted against the wave vector k for
the same set of parameters as in (a). In the inset, the structure
factor obtained from the linearized interface equations is plot-
ted against k for the corresponding set of parameters, except
that L = 512.

the roughness profile shows pronounced oscillations. The
cause of such numerical oscillations was identified to be
the numerical interpolation of the interface position be-
tween the grid points with time scale equal to lattice size
over the velocity. It can be clearly seen from the inset of
Figure 3 that for the same noise strength, all the rough-
ness curves follow the same initial growth profile, suggest-
ing an universal growth exponent β. It was found that for
∆α = 0.1, 0.2, and 0.3, the corresponding values of β are
about 0.48, 0.50, and 0.52, respectively.

The saturated width of the interface was found to be
independent of the lateral system size as long as the lateral
system size is larger than the intrinsic crossover length
ξ×, which has been derived from the linearized interface
equation in the preceding section. It should be pointed out
that in reference [28], where the case of driven wetting was
briefly discussed, it is claimed that after an initial growth,
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Fig. 3. Data collapse of the interface width according to the
scaling form of equation (16) for different sets of parameters
with L = 256: (i) ∆α = 0.3, v = 0.05 and 0.01; (ii) ∆α = 0.2,
v = 0.01, 0.005, and 0.002; (iii) ∆α = 0.1, v = 0.005, 0.002,
and 0.001. The inset shows the original interface width data.

the interface roughness follows a weak logarithmic growth,
w ∝ ln(t). From Figure 3 one can see that we do not
find any evidence of such a logarithmic growth regime,
although it could be too slow to be detected numerically.

Assuming that the crossover length ξ× controls the
roughening process, we can use the results in reference [12]
and write a Family-Vicsek type of scaling relation

w(t) = ∆αξχ
× g

(
tβ

ξ
χ/β
×

)

, (16)

where g is a scaling function. Data collapse using this scal-
ing from is presented in Figure 3. Using the data collapse,
we give our best estimates for the roughness and growth
exponents as χ = 1.35±0.05 and β = 0.50±0.02. We note
that reference [28] estimates that χ ≈ 1.25 and β ≈ 0.4,
with β = χ/3. However, our results do not support this
relation.

In the case of spontaneous imbibition, it was found
that the rough interfaces obey temporal multiscaling, with
different scaling exponents for different moments of the
time-dependent correlation functions [12]. These functions
and the corresponding exponents are defined by

Cq(t) = 〈|H(x, t + s) − H0(t + s) − H(x, s) + H0(s)|q〉1/q,
(17)

for q = 1, 2, 3, .... The correlation functions C2(t) are
shown in Figure 4a for different velocities. The crossover
time t× between the power law regime of C2(t) and sat-
uration increases with decreasing velocities. The different
functions Cq(t) for q = 2, 4 and 6 are shown in Figure 4b.
At early times all the functions follow power law behavior
Cq(t) ∼ tβq , with exponents βq ≈ 0.94 which are inde-
pendent of q. This behavior is, however, observed only
in time scales smaller than the disorder persistence time
td = ∆y/v, where ∆y = 1 is the dimensionless spatial
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Fig. 4. (a) The temporal correlation function C2(t) for
L = 256, with ∆α = 0.2 and v = 0.015, 0.01, and 0.005. In
the inset, the corresponding data are shown for the linearized
interface equations. (b) Temporal correlation functions Cq(t)
with q = 2, 4, and 6 for L = 256, with ∆α = 0.2 and v = 0.015.
In the inset, the the corresponding functions are shown for the
linearized interface equations. See text for details.

discretization step. If we consider Cq(t) for t > td, we find
evidence of multiscaling with β2 ≈ 0.79, β4 ≈ 0.69 and
β6 ≈ 0.54 in a small time regime, similar to the spon-
taneous case [12]. However, it is difficult to verify true
multiscaling here because of the rapid crossover to the
saturated regime, although we do expect avalanche type
of motion to be present here, which often leads to multi-
scaling behavior [33].

3.3 Numerical results from the linearized interface
equations

An interesting question concerns the range of validity
of the linearized interface equation (LIE), equation (9),
for the fluctuations of the height, in particular in the
driven regime with noise included. This issue is also re-
lated to the possible existence of universality classes of
roughening for conserved systems with quenched noise; a
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problem for which there are virtually no analytical results.
To this end, we have integrated equation (9) numerically
in time. To incorporate the nonlinear nature of the dis-
order η(x, H(x, t)), a back-and-forth Fourier transforma-
tion scheme is required at every time step. A square lat-
tice landscape of independently Gaussian distributed noise
was used for η(x, y). We note that solving equation (9) in-
stead of the full 2D phase field model is numerically faster
due to reduction of dimensionality.

To compare the results with the phase-field model, we
numerically computed the same set of correlation func-
tions. From the analytic derivation of the interface equa-
tion, we can obtain a quantitative map between the pa-
rameters of the phase field model and the interface model,
which is as follows. The interface velocities should obvi-
ously be the same. The disorder fields between the models
are related by η = Mα, where M is the mobility in Fick’s
law. In our dimensionless units M = 1. The effective sur-
face tension in the phase field model is given by the stan-
dard form of the potential V (φ) as σpf =

∫
du (∂uφ0(u))2,

where φ0 is the 1D kink solution of the disorder-free sys-
tem. The surface tension in the interface equation comes
out as σ = Mσpf .

The results from the LIE are collected in the insets of
the corresponding phase field results in Figures 2–4. Obvi-
ously, the length scale ξ× is present in an identical manner
in both cases. Remarkably enough, the corresponding re-
sults from the two cases are in most cases quantitatively
close to each other. There are some important differences,
however. First, the saturated interface widths differ by
about 20%, the interfaces from the LIE being rougher.
Since the interface model only takes into account linear
dissipation effects, we would expect it to underestimate
the stiffness of the interface, leading to larger roughness
amplitudes than in the full phase field model.

Next, we examine the data collapse for the interface
roughness (Fig. 3) using the scaling function of equa-
tion (16). The best collapse is obtained for slightly differ-
ent values of the exponents as compared to the phase-field
model. The roughness exponent is close to the previous
value, namely χ = 1.27±0.05. However, the growth expo-
nent is now given by β = 0.37±0.04 for the LIE, where the
difference to the phase field result is outside of the numer-
ical uncertainties. In the LIE we also noted a slight devia-
tion from the behavior of the crossover time t× ∝ ξ

χ/β
× as

a function of the disorder strength ∆α. Another difference
between the two models was found in temporal multiscal-
ing. In the LIE each of the moments increases with a dif-
ferent exponent βq even at times smaller than the disorder
persistence length td. The exponents are β2 = 0.75±0.03,
β4 = 0.55±0.05, and β6 = 0.47±0.03. The values of these
exponents are lower than in the phase-field model, which
is not surprising since the LIE has a lower value of β, too.

4 Summary and conclusions

In the present work, we have studied wetting of a dis-
ordered medium driven by a constant mass flux in a 2D

system. Our model is a prototype phase field model in-
corporating mass conservation into the flow of two im-
miscible fluids, equation (4). From this model we have
derived non-local interface equations to lowest order in
Fourier space fluctuations, equations (8) and (9). Because
of the linearization, these equations are local in Fourier
space. The constant flux boundary condition gives rise to
a interface that moves with a constant velocity propor-
tional to the flux. We have obtained a time-independent
crossover length scale ξ× ∝ √

σ/v from the interface equa-
tions. Numerically, we find that the kinetic roughening
of an interface is governed by a scaling relation of the
Family-Vicsek type, where ξ× controls the extent of the
fluctuations (for ξ× < L) as given by equation (16). For
the kinetic roughening of the interfaces, we find that they
are superrough, with χ = 1.35 ± 0.05 and χloc ≈ 1. For
temporal roughness, β = 0.50± 0.02, and there is numer-
ical evidence of temporal multiscaling for t > td. We note
that all these results are in agreement with the case of
spontaneous imbibition studied earlier in references [12]
for interfaces, which are kept at constant height in the
steady-state regime described by Washburn’s law.

In addition to obtaining the LIE by analytic methods,
we have also made a direct comparison between it and
the full phase field model with quenched noise properly
included. We find very good agreement between the spa-
tial correlations of the interfaces, even including approxi-
mately the same roughness exponent of χ ≈ 1.3. However,
the temporal correlations in the two cases are different:
while the amplitude of the saturated roughness is larger
in the LIE, but the growth exponent β = 0.37 ± 0.04
is smaller than the phase-field result β = 0.50 ± 0.02.
Also, spatial multiscaling is more clearly present in the
LIE within our numerics.

Our analytical and numerical results of forced wet-
ting can be compared with experimental results of ki-
netic roughening of an oil-air interface in a forced wetting
where the experiments were done in a horizontal Hele-
Shaw cell with quenched disorder [13]. It was found in the
experiments that the growth exponent β ≈ 0.5 which is
nearly independent of the experimental parameters, and
the roughness exponent χ ≈ 1.3, which, however, depends
on experimental parameters. While a fully quantitative
comparison may be difficult, both exponents obtained ex-
perimentally are in very good agreement with our numeri-
cal results. Furthermore, the experiments confirm that the
crossover length scales as the inverse of the square root of
velocity, as found in our theory. Further experiments on
the dependence of the results on other systems parameters
would be most interesting.

This work has been supported in part by the Academy of Fin-
land through its Center of Excellence grant. We would like to
thank M. Alava and M. Dube for their insightful comments.
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Appendix A: Projection to an interface
equation

In this Appendix we discuss the details of the sharp
interface projection to obtain the interface equation,
equation (6) from the phase field equation of motion,
equation (4). First we invert the phase field equation in
a volume V with boundary S, by multiplying with the
Green’s function, integrating over V and applying Gauss’s
divergence theorem. The result is

∫

V

d3r′
√

det(g′)G(r, r′)∂tφ(r′) = µ(r) + Λ, (18)

where the surface term Λ is explicitly given by

Λ =
∫

S

dS′ · [G(r, r′)∇′µ(r′) − µ(r′)∇′G(r, r′)]. (19)

The standard procedure is then to consider a single-valued
sharp interface H(x, t), and transform to coordinates of
distance along and perpendicular to this interface given
by (s, u). In these coordinates the metric tensor is given
by

g =
[
1 0
0 (1 + uκ)2

]
, (20)

where κ is the curvature of the interface, defined via the
unit tangent t and unit normal n of the interface as
κt = ∂sn. The volume integration measure is the Jaco-
bian J =

√
det(g) = 1 + uκ, and it must be positive

definite. This limits the validity of the coordinates to the
area not further from the interface than the radius of the
interface curvature.

Next, a number of standard approximations are made,
including the small curvature approximation, which gives
the Laplacian to first order in curvature as

∇2 � ∂2

∂u2
+

∂2

∂s2
+ κ

∂

∂u
. (21)

For a sharp interface with small curvature, the phase
field near the interface has the form given by the
α = 0, 1D kink solution φ0 in the normal direction, de-
fined by ∂2

uφ0 = V ′(φ0). The chemical potential is then
µ � −κ∂uφ0 − α. Since the kink solution has a small gra-
dient except at the interface, we can project equation (18)
to the interface with the operator

∫
du∂uφ0(u)[·], and

take the explicit sharp interface limit φ0 � −1 + 2Θ(u).
The projected equation involves contributions only from
an area not further from the interface than the interface
width, which is less than the interface radius of curvature
by the virtue of the small curvature and sharp interface
approximations. Therefore, the use of coordinates (s, u) is
valid. Equation (18) is then projected to

2
∫

ds′G(s, 0|s′, 0)∂tu(s′) = −σκ−α(s, 0) + Λ|u=0, (22)

where σ = 1
2

∫
du (∂uφ0(u))2 is the effective surface ten-

sion. This can be transformed to Cartesian coordinates
using ds∂tu = dx∂tH(x, t), yielding equation (6).

Appendix B: Linearization of the interface
equation

In this Appendix we describe in detail the method of us-
ing strip geometry to obtain the linearized interface equa-
tions (Eqs. (8) and (9)) from the full non-local sharp inter-
face equation, equation (6). For the half-strip {(x, y)|x ∈
[0, L], y ∈ [0,∞]}, the Green’s function for the Laplacian,
with homogenous von Neumann boundary conditions at
the strip edges, is given by

G(x, y|x′, y′) =
1

2L
[|y − y′| + y + y′]

− 1
π

∑

n

1
n

cos
(nπx

L

)
cos

(
nπx′

L

)

×
[
e−

nπ
L |y−y′|+e−

nπ
L (y+y′)

]
. (23)

The boundary term is readily evaluated as
Λ = F

∫
dx′G(x, y; x′, 0) = Fy. The linearization can

only be done around the interface of the disorder-free
system. This is the same as the average interface
height of the disordered system only when F is much
larger than the critical driving force of the underlying
pinning-depinning transition. For a disorder-free system
equation (6) becomes

2
∫

dx′G(x, H0(t); x′, H0(t))∂tH0(t) = FH0(t) (24)

⇔ ∂tH0(t) =
F

2
. (25)

The chemical potential gradient thus directly translates
to velocity in our dimensionless units, where the mobil-
ity in Fick’s law is unity. Linearizing equation (6) using
H(x, t) = H0(t) + h(x, t) leads to

IB + IC + ID = −σ

2
∂2

xh(x, t)− 1
2
η(x, H(x, t))+

1
2
Fh(x, t),

(26)
where

IB =
∫

dx′ ∂yG(x, y; x′, H0)|y=H0h(x, t)∂tH0; (27)

IC =
∫

dx′ ∂y′G(x, H0; x′, y′)|y′=H0h(x′, t)∂tH0; (28)

ID =
∫

dx′ G(x, H0; x′, H0)∂th(x′, t). (29)

The derivatives of G, as obtained from the definition of
equation (23), are discontinuous at y = y′ = H0(t), where
the linearization was done. To go around this problem
we simply set Θ(y − y′)|y=y′=H0(t) = 1/2. We have also
performed the same half-strip linearization in the case of
the spontaneous imbibition, where the half-plane Green’s
function can also be linearized directly [12,24]. These
two methods yield identical results, i.e. linearization and
Fourier transformation commute with the half-plane limit.
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The rest of the procedure is then straightforward, and
by defining the Fourier series representations

h(p, t) =
1
L

∫
dx cos

(pπx

L

)
h(x, t); (30)

η(p, t) =
1
L

∫
dx cos

(pπx

L

)
η(x, H(x, t)), (31)

and projecting equation (26) to Fourier component p with
Pp[·] =

∫
dx cos (pπx/L) [·], we obtain

∂tH0h(p, t)
[
1 + e−2pπ

L H0

]
− L

pπ
∂th(p, t)

[
1 + e−2pπ

L H0

]

= σ
(pπ

L

)2

h(p, t) − η(p, t) + Fh(p, t). (32)

In the Fourier projection of the curvature term, one
obtains boundary terms that are non-zero at non-zero
contact angles, but they are negligible in the limit
L→∞. Changing variables to k = pπ/L and substituting
F = 2∂tH0 we obtain equation (9), with a discrete wave
vector k. Taking the limit L→∞ while keeping k constant
finally gives the proper continuum limit.
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